Author: Ali ATEŞ, Sacit Zendehdel SHEKARDASHT,, Eyüb CANLI

Publishing Date: 2017

E-ISSN: 2147-9364

Volume 5 Issue 4


Hydrogen is an important energy vector and a strong candidate for energy storage. It will be a useful tool for storing intermittent energy sources such as sun. The main objective of this work is to assess a syste harnessing solar energy in electrical form and store it as hydrogen by means of an electrolyzer for small scale consumers away from the grid such as rural areas by computer simulation. Hydrogen then can be consumed in a fuel cell in order to generate electricity. The electrical energy obtained from solar energy via photovoltaic panels was used in order to charge a battery first and then hydrogen was acquired by using aforementioned energy in the electrolysis of water. In the second stage, electricity is generated in a fuel cell by using the generated hydrogen. A theoretical analysis was done via computer software by solving the constituted mathematical model. Data containing monthly average insolation values of Konya City according to years were used in this model. Electrolyzer temperature and pressure values and efficiencies of the photovoltaic panels were used as the input parameters. General system efficiency and effectiveness, generated electricity and hydrogen amounts were obtained as the output parameters. Among all, temperature was found to be the most effective parameter according to the obtained results considering the generated hydrogen amount, system effectiveness and efficiency. A wide range of electrical power between 400 W and 1800 W can be harnessed from the PV part of the system. Hydrogen production in the other hand can be attained in the range of 120-130 g/month. Power curve of the fuel cell at the start up of the system yields a 0.001 seconds reaction time. The proposed system can be utilized in rural parts of Konya and climatically similar regions in the world.

Keywords: Electrolysis of Water; Hydrogen Fuel Cell; Mathematical Model; Photovoltaic

Full Text