Author: Muhammad Naseem Khan, Hong Lin, Meng Li, *Jingxue Wang, Zulfiqar Ali Mirani, Seema Ismat Khan, Muhammad Aslam Buzdar,Imran Ali and Khalid Jamil

Publishing Date: 2017

E-ISSN: 1011-601X

Volume 30 Issue 3


Control of harmful bacteria in food, aquaculture, pharmaceuticals, agriculture, hospitals and recreation water pools are of great global concern. Marine bacteria are an enormous source of bio-controlling agents. The aim of this study was to identify and optimize the growth conditions including effect of different biotic and abiotic factors on antimicrobial activity of strain DK1-SA11 isolated from Qingdao Bay of China Yellow Sea. Microscopic characterization, API® 20E and 50 CHB kit base carbohydrates utilization, 16S rDNA and DNA gyrB gene sequencing studies identified the bacterium as Bacillus subtilis subsp. spizizenii DK1-SA11. Antimicrobial spectrum of cell free supernatant (CFS) has shown antimicrobial activities against all test strains including methicillin-resistant Staphylococcus aureus, E. coli O157:H7, Candida albicans, Klebsiella pneumoniae, Listeria monocytogenes, Vibrio parahaemolyticus, E. coli, Pseudomonas fluorescens, Salmonella typhimurium and Vibrio cholerae. Among all the media tested, Marine Broth 2216 was found to be the best medium for bacterial growth and production of antibacterial compounds. The other optimum conditions for growth were pH:7 and incubation temperature: 25°C with ≥ 180 rpm for 60-72 h. Out of 49 different carbohydrates tested, D-mannose increases the antibacterial activity by 33.3% while Darabitol decreases it by 44.4%. Crude CFS showed activity even after three months of storage below -20°C and boiling for 10 min, whereas it loses 100% of its antimicrobial activity after enzymatic treatments of lipase, trypsin and papain. The production of antimicrobial compounds and broad spectrum of antimicrobial activity against all tested pathogens suggested that the strain DK1-SA11 can be used as a source for probiotics, synbiotics and antibiotics.

KEYWORDS: Marine bacteria; Bacillus subtilis subsp. Spizizenni, antibacterial agent, broad spectrum, bio-autography.

Full Text